MCB, Kabel dan Beban Daya

halaman 2 dari 3

Kapasitas kabel menahan beban voltase (Volt)

Besar kapasitas beban voltase yang menjadi keluaran MCB ini harus diimbangi dengan kapasitas yang sama pada kabel dalam menahan beban voltase. Besar fisik kawat tembaga yang diperkenankan boleh lebih besar ataupun lebih kecil dari kapasitas listrik terpasang. Tergantung dari kebutuhan dan tujuan pemakaian, namun yang terpenting harus dapat menahan beban voltase sesuai tertera pada MCB (230/400V). Kode ini tertera pada pembungkus kabel sebagai 300 / 500V. Ketidaksesuaian kemampuan menahan beban voltase pada kawat tembaga (lebih kecil), akan membuat kondisi kawat mudah menjadi panas. Pada titik tertentu, suhu panas yang dihasilkan mampu me-leleh-kan karet pembungkus kawat. Jika sudah mencapai kondisi seperti ini, biasanya switch MCB akan mudah “trip”.

 

Kapasitas kabel dalam menahan beban daya (Watt)

Tabel di bawah ini, saya peroleh dari situs beralamat http://teguhpati.blogspot.com/2012/09/rumus-menentukan-diameter-kabel.html?m=1. Anda dapat membaca pembahasan mengenai detail teknik dari tabel ini pada alamat tadi. Judul kolom ke-2 adalah “Penampang Kabel (mm²)” yang mana dalam artikel ini diartikan sebagai besar fisik kawat tembaga. Sedangkan judul kolom ke-3 adalah “Kemampuan membawa Arus (Ampere)” yang dalam artikel ini diartikan sebagai besar beban arus listrik (daya). Angka-angka pada tabel ini menjelaskan kesesuaian antara besar fisik kawat tembaga dengan beban arus listrik yang mampu dilewatinya / dihantarkan.

tabel kemampuan hantar arus

Kapasitas kabel dalam menahan beban daya (Watt), kurang-lebih konsepnya mirip dengan kapasitas kabel dalam menahan beban tegangan (Volt). Namun disini lebih menitik beratkan pada besar fisik kawat tembaga dalam kabel. Jadi, keluaran daya (Watt) MCB juga harus diimbangi dengan kapasitas yang sama dengan kemampuan kabel menahan beban daya (Watt). Kemampuan kabel dalam menahan beban daya lebih ditentukan oleh ukuran fisik kawat tembaga yang dimilikinya. Anda dapat melihatnya pada angka yang tertera pada tabel tabel di atas.

Pengertiannya disini adalah untuk kapasitas listrik 4400 Watt, kita tidak harus menggunakan kabel dengan fisik kawat tembaga 2,5mm². Maksud fungsi ketebalan fisik kawat tembaga 2,5mm² disini adalah dapat digunakan untuk menahan beban penggunaan daya hingga 4400 Watt. Jadi, jika instalasi listrik terpasang di rumah 4400 Watt dan anda hendak menggunakan seluruh daya 4400 Watt untuk menjalankan satu / beberapa perangkat elektronik sekaligus, maka kabel yang disarankan untuk itu adalah kabel dengan (minimum) fisik kawat tembaga 2,5mm².

Contoh lain : pada instalasi listrik terpasang 4400 Watt (20 Ampere), tidak ada masalah jika anda hendak memasang dan menggunakan kabel dengan besar fisik kawat tembaga 1,5mm² untuk kebutuhan pemakaian perangkat elektronik hingga batas daya sebesar 3960 Watt (18 Ampere). Memang lebih kecil dari fisik kawat tembaga yang digunakan untuk menahan beban daya seluruh kapasitas listrik terpasang sebesar 4400 Watt, dan itu tidak masalah, selama penggunaan pemakaian dayanya maksimal 3960 Watt saja.

Apa yang terjadi jika pemakaian daya melebihi 3960 Watt? Saya belum pernah mencoba mempraktekkannya. Teori yang ada di kepala saya adalah hal itu masih dapat dilakukan tanpa membuat MCB trip, namun dengan resiko kabel akan menjadi panas setelah pemakaian dalam waktu cukup lama. Sama dengan kasus kelebihan beban voltase, suhu panas yang dihasilkan kawat tembaga mampu me-leleh-kan pembungkus kawat dan pada titik tertentu akan menyebabkan MCB trip.

Ukuran ideal fisik kawat tembaga

Jika mengacu pada tabel kemampuan hantar arus di atas, fisik kawat tembaga berukuran 0,75mm² pada tegangan 220 Volt mampu untuk menahan beban daya hingga sebesar 12 Ampere x 220 Volt = 2640 Watt. Jadi, kabel dengan fisik kawat tembaga 0,75mm² bisa digunakan pada jaringan kabel untuk instalasi listrik terpasang mulai dari 450 hingga 2200 Watt. Benarkah demikian? Secara teori, hal tersebut adalah mungkin untuk diterapkan. Dalam prakteknya, hampir setiap jaringan kabel di rumah siap huni memiliki spesifikasi ukuran fisik kawat tembaga minimal 1,5mm² s/d 2,5mm².

Di dalam kehidupan sehari-hari, pada rumah tinggal kelas menengah ke bawah, rata-rata konsumsi daya listrik sebuah / beberapa perangkat elektronik pada umumnya berada pada kisaran 100 hingga 1000 Watt. Walaupun terjadi pemakaian daya hingga melebihi kapasitas listrik terpasang, hal tersebut akan diantisipasi dengan jatuhnya switch MCB meteran PLN. Lalu, dengan kapasitas instalasi listrik terpasang berada pada kisaran 450 s/d 2200 Watt, masihkah kiranya diperlukan fisik kawat tembaga sebesar 2,5mm² sebagai spesifikasi dasar jalur kabel stopkontak? Ataukah cukup hanya dengan menggunakan ukuran 1,5mm² saja? Jadi, ukuran mana yang harus dipakai untuk digunakan pada instalasi jaringan kabel? 2,5mm² atau 1,5mm²? Atau sesuai berdasarkan angka yang tertera pada tabel di atas?

Menurut saya, sebesar apapun ukuran fisik kawat tembaga, selama kemampuan hantar arusnya sama dengan atau lebih besar dari kapasitas instalasi listrik terpasang, dapat dikategorikan sebagai ukuran ideal. Namun, bagaimanapun juga, apa yang saya nyatakan tidaklah memiliki dasar pengetahuan kelistrikan secara formal. Dasar dari tindakan yang saya lakukan dalam menangani listrik hanyalah pengalaman belaka (non formal). Untuk itu, parameter ukuran terbaik / ideal yang saya ambil dalam menentukan ukuran kabel, cenderung pada efek yang berhasil saya tangkap saat perangkat elektronik di rumah dioperasikan. Semakin rendah efek negatif yang ditimbulkan, semakin baik kualitas kabel yang digunakan. Begitulah kira-kira parameternya, dan itu bukan ukuran teknik yang sebenarnya atau diakui keabsahannya secara akademis. Sehingga, berlebihan atau tidaknya keputusan saya dalam menentukan ukuran kawat tembaga sebesar 2,5mm² (pada jalur stopkontak) dan 1,5mm² (pada jalur rumah lampu) dari sudut pandang akademis, saya tidak mau terlalu memedulikannya.

Hingga saat ini, saya belum pernah menemukan masalah pada jalur kabel stopkontak yang dipasang menggunakan fisik kawat tembaga 2,5mm² pada rumah tinggal dengan instalasi listrik terpasang berkapasitas 900, 1300 dan 2200 Watt. Kecuali, terjadi kesalahan dalam instalasi pemasangan jalur dan sambungan kabelnya. Demikian juga halnya untuk jalur kabel rumah lampu (1,5mm²). Ini juga yang menjadikan alasan bagi saya untuk tetap tidak menggunakan kabel dengan fisik kawat tembaga di bawah ukuran 2,5mm² (jalur stopkontak) dan 1,5mm² (jalur rumah lampu ).

Faktor penentu ukuran kawat tembaga

Hasil eksperimen yang saya kerjakan selama 1 tahun memperlihatkan bahwa untuk menyalakan lampu berkapasitas daya sebesar 5 Watt selama 24/7, cukup dengan menggunakan fisik kawat tembaga sebesar 0,75 mm². Tidak perlu hingga 1,5 mm². Namun, ada beberapa hal / faktor yang cukup rumit dalam penerapannya, terlebih lagi jika kita membuat pencabangan dari / untuk stopkontak.

  • Faktor I – Perbedaan ukuran kawat tembaga : Membuat pencabangan kabel untuk rumah lampu dengan mengambil sumber daya dari jalur kabel stopkontak adalah hal biasa ditemukan pada jaringan kabel di rumah siap huni. Mungkin hal itu memang telah menjadi teknik standar untuk diterapkan di rumah siap huni. Seandainya besar ukuran sambungan kabel rumah lampu 0,75mm² dan 2,5mm² untuk stopkontak; tidaklah mudah membuat sambungan antar kabel yang rapi dari kedua ukuran kawat tembaga tersebut. Bisa dilakukan, namun tidak mudah pengerjaannya.
  • Faktor II – Mudah diperoleh : Tidak semua ukuran kabel mudah diperoleh dan dijual murah di pasaran. Saya dengan mudah mendapatkan kabel dengan spesifikasi kawat 2,5 mm² dan 1,5 mm² dari brand / merk yang sama di pasaran dengan harga grosir, tetapi tidak demikian halnya untuk ukuran 1 mm² dan 0,75 mm².
  • Faktor III – Kemampuan menahan beban : Jumlah pencabangan stopkontak yang menginduk pada satu jalur kabel adalah kasus yang sering terabaikan. Faktor ini terlihat sepele namun dalam prakteknya sering membawa masalah tidak terduga di kemudian hari. Semakin banyak cabang stopkontak dibuat dari satu kabel induk, semakin besar kemungkinan beban arus listrik yang harus ditanggung oleh kabel induk. Kita tidak pernah menduga berapa besar beban arus listrik yang harus ditanggung oleh sebuah kabel induk, karena tidak selamanya kita memperhatikan besar konsumsi daya perangkat elektronik yang terhubung pada setiap stopkontak. Kita pun tidak akan selalu mengingat sumber pencabangan dari stopkontak-stopkontak yang ada. Tidak ada masalah untuk kasus kelebihan pemakaian daya, karena akan langsung diantisipasi oleh MCB meteran PLN. Namun, bagaimana jika terjadi kenaikan voltase? Batas waktu (time frame) dan besaran kenaikan voltase yang dapat ditahan oleh kabel adalah dua hal berbeda yang (mungkin) bisa terjadi secara bersamaan dengan efek yang sulit diprediksi. Walaupun pada titik tertentu akan diantisipasi juga oleh MCB, berapa besar efek negatif telah dihasilkan terhadap kabel sebelum MCB berhasil menghentikannya?

Faktor terakhir inilah yang memaksa saya untuk tetap menggunakan kabel dengan ukuran fisik kawat lebih besar daripada kapasitas listrik terpasang. Harapan saya atas efek tindakan ini adalah saat listrik berada di atas kondisi normal, sebelum diputuskan alirannya oleh MCB, kabel masih mampu menahan kelebihan beban tanpa menimbulkan efek negatif pada sebagian / seluruh jaringan kabel.

Ide membuat jaringan kabel menggunakan fisik kawat tembaga berukuran besar (di atas kapasitas listrik terpasang) yang dibatasi oleh kapasitas MCB, telah saya terapkan bersamaan dengan pengerjaan instalasi stabilizer 3000VA di rumah. Hasilnya, hingga saat ini hanya dua penyebab MCB trip di rumah saya, yaitu lonjakan voltase dari asupan listrik PLN atau pemakaian perangkat elektronik secara bersamaan hingga melebihi kapasitas listrik terpasang.

 

Selanjutnya⇒

2 thoughts on “MCB, Kabel dan Beban Daya”

Comments are closed.

Memahami Perilaku Listrik sehari-hari di Rumah

%d bloggers like this: